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Abstraet--A two-phase continuum theory (two-fluid model) for a suspension of rigid spherical particles in a 
Newtonian fluid is applied to investigate theoretically the flow induced by impulsive motion of an infinite flat 
plate. Consideration of rotational intertia of the particles gives rise to an antisymmetric part of the volume 
averaged stress tensor of the continuous phase. The influence of particle rotation and of antisymmetric 
stresses of the continuous phase, which depend on the relative rotational motion between the particles and 
the ambient fluid, on the motion of each phase and on the skin friction is examined. 

Approximate solutions to the equations, corresponding to the physical situation of large and small 
particle slip, are obtained by power series expansions for small and large times. 

1. INTRODUCTION 
The problem of the flow induced by the impulsive motion of an infinite fiat plate parallel to its 
own plane, first considered by Stokes for a Newtonian fluid, has been extended to two-phase 
flows by several authors. Liu (1967), Marble (1970) and Healy & Yang (1972) studied the flow 
induced in a dusty gas (rigid spherical particles in a gas). The interphase force, i.e. the force on 
the dispersed phase due to the presence and motion of the continuous phase includes in their 
analysis the Stokes drag force, the volume fraction of the dispersed phase being very small. 
Murray (1967), in addition to the drag force, introduces the added mass effect in the interphase 
force. Otterman (1968) takes into account the lateral migration of the particles in the shear flow 
of the continuous phase by introducing the slip-sbear force of Saffman (1965) besides the drag 
force. Di Giovanni & Lee (1974) have extended Otterman's results by including the added mass 
effect and finite volume fraction of the dispersed phase. None of the above cited papers takes 
into account antisymmetric stresses of the continuous phase, which arise as a result of 
consideration of rotational inertia of the rigid particles (e.g. Afanas'ev & Nikolaevskii 1969 and 
Immich 1980a, b). Hamed & Tabakoff (1973, 1974, 1975) were the first to include in their 
analysis of the impulsive motion of an infinite fiat plate antisymmetric stresses due to the relative 
rotational motion between the particles and the fluid. The interphase force includes the drag force 
and the slip-shear lift force of Saffman (1965). 

However, this lift force on the particles in their equations is introduced in the wrong 
direction. Hence, their result of a demixed region near the plate due to particle migration away 
from the wall is in direct contradiction to the results of particle migration to the wall for the 
present problem, as obtained by Otterman (1968), Otterman & Lee 0970), Di Giovanni & Lee 
(1974) and Immich (1979). Furthermore, the symmetric part of the stress tensor of the 
continuous phase in the equations of Hamed and Tabakoff is contained in the same form as for 
a pure fluid, though, e.g. Drew & Segel (1971) and Ishii (1975) have shown that the stress tensor 
in the momentum balance of the continuous phase appears in a form multiplied with the volume 
fraction of the continuous phase. 

In the present paper, the impulsive motion of an infinite fiat plate is examined by application 
of a two-phase continuum theory as derived by the author (Immich 1979, 1980a, b) by means of 
a volume-averaging method. Particle rotation and antisymmetric stresses are considered, the 
interphase force includes the pressure force, the drag force, the added mass effect and the 
slip-shear lift force of Saffman (1965). 
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The purpose of the present paper is to investigate the influence of antisymmetric stresses 
due to relative rotation between the phases. The analytical solutions obtained by series 
expansions for small and large times (corresponding to the situation of large and small relative 
velocity between the phases respectively) give a possibility to show the influence and the order 
of magnitude of the antisymmetric stresses on the motion of each phase. By comparing these 
solutions with the results for the case when antisymmetric stresses are neglected it is demonstrated 
that antisymmetric stresses are important whenever there are palpable differences in the rotational 
motion of each phase. In the present problem this relative rotation is caused by inertia forces which 
are dominant for small times (large relative velocity). For this case antisymmetric stresses are 
shown to influence even the zeroth order solution for the fluid velocity tangential to the plate. 

2. VOLUME AVERAGED EQUATIONS OF MOTION 

In a two-phase continuum theory (two-fluid model) both phases are treated as two 
mechanically interacting interpenetrating continua. The variables appearing in the balance 
equations are averaged variables. Hence, fluctuations of the local variables, e.g. the disturbance 
of the flow field in the vicinity of a particle, are smoothed by the averaging method. However, 
the statistical properties of these fluctuations are considered in the averaged balance equations 
(e.g. by the diffusive or Reynolds stresses). Averaged balance equations can be obtained by 
averaging the balance equations for the local (not averaged) variables. Ishii (1975) applies the 
method of time averaging, whereas, e.g. Panton (1968), Batchelor (1970), Whitaker (1973), 
Buyevich & Markov (1975) and Immich (1979) use the method of volume averaging. Drew 
(1970, 1971) applied an averaging method which is a combination of volume and time averaging. 

The volume averaged equations derived by Immich (1980a, b) apply to a situation where the 
continuous phase is a Newtonian fluid and the dispersed phase is made up of rigid spherical 
particles. In order that the dispersed phase can be regarded as a continuum, the mean 
interparticle distance has to be small compared to a macroscopic dimension of the flow field. 
The volume over which the averaging has to occur must be large enough to include a 
representative number of particles, but small compared to a macroscopic dimension of the flow 
field. It has been shown by Immich (1980a, b) that the volume averaged stress tensors of each 
phase are not symmetric when rotational inertia of the particles is considered and that the 
volume averaged balance equations for the dispersed phase are closely related to the cor- 
responding equations of a polar fluid (see Eringen 1966 and Cowin 1968). 

Usually the volume over which the averaging has to occur is chosen to be spherical (see 
Drew 1970, 1971, Buyevich & Markov 1975 and Immich 1980a). Provided the statistical 
properties of the suspension do not vary appreciably over this volume, the volume-averaged 
variables may be assumed to be equal to averaged variables obtained by an ensemble averaging 
method (for a discussion see, e.g. Batchelor 1970). 

In the present situation of the flow induced by impulsive motion of an infinite fiat plate the local 
(not averaged) flow field of each phase is statistically homogeneous in planes parallel to the flat 
plate (planes y = constant, see figure 1). Due to strong gradients normal to the plate induced by 
the shear motion the statistical properties cannot be assumed to be constant over a length l 
normal to the plate which is of the order of magnitude of some mean interparticle separations. 
For the present flow problem we choose an averaging volume whose dimensions parallel to the 
flat plate are large (may go to infinity) to include (or intersect) a great number of particles. 
However, the dimension normal to the plate is chosen to be only some particle diameters. 
Hence, for example, the local disturbances of the flow field due to the motion of single particles 
relative to the fluid are smoothed out in a plane parallel to the plate. Since the dimension of 
the averaging volume normal to the plate is only some particle diameters, these local dis- 
turbances are smoothed out normal to the plate, too. However, provided the boundary layer is 
large compared to a particle diameter, the shear motion induced by the flat plate is not 
smoothed out. Formally, the volume averaged equations are the same for a spherical or for the 



IMPULSIVE MOTION OF A SUSPENSION 443 

y(i=2) v ~  

% u¢(y,t) 

~zl/=:3) X(/=I) 
\ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \  \ \ \  \ \  \ \  \ ~ ",,\\ 

U 
Figure I. Flow induced by the impulsive motion of an infinite fiat plate. 
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above described averaging volume. However, the transport coefficients in the constitutive 
equations must take into account the specific flow situation (see discussion of [2.19]). 

2.1 Volume averaged equations 
Heat conduction is not considered here in the problem of the impulsive motion of the fiat 

plate. The materials making up each phase are assumed to be incompressible, the continuous 
phase being a Newtonian fluid, the dispersed phase consisting of rigid spherical homogeneous 
particles of equal material density pd and of the same radius a. The volume averaged equations 
of motion derived by Immich (1980a, b) for the continuous and the dispersed phase are 
respectively. 

Balance of mass 

Ofl-(t - a) + ~-~/[(1 - a ) v f ]  = 0 

- - +  o.  
ot  

Balance of linear momentum 

(I , dv f_  O,,, a)~'~d+(l a)pJi F~ 
- a ) p c  d--~ - O'-~j t ~ l  - c _ _ 

d v i  d - 0 d- o,p,,-d-f; - + ÷ I:,. 

Balance of angular momentum 

(I - a)eqt~ = Mid 

d~o / jk 'jk + + . apdffd..~d = d u~j~ d d 

[2.1] 

[2.2] 

[2.3] 

[2.4] 

[2.5] 

[2.61 

Here volume averaged variables of the continuous and the dispersed phase are marked by the 
index c and d, respectively. The average volume fraction of the dispersed phase is a, Pc and Pd 
are the material densities of each phase, vf and vf are the averaged velocities, toid is the 
average particle rotation which is kinematically independent of v~. The interphase force is F~ 
and M~ is the interphase moment, i.e. the volume averaged moment on the dispersed phase due 
to the relative rotational motion of the particles and the ambient fluid. External accelerations 
(e.g. gravity) are represented by fi. The stress tensors ~-~ and i-~ include the volume averaged 
local stresses 7r~j and the diffusive stresses Jq ("Reynolds stresses") which arise as a result of 
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volume averaging: 

r ~  = 7/'i~" -- p c J ~  [2.7] 

z~ = 7r~ - PdJ~ 112.8] 

where 

( 1  - a)J  ;; : ((1 - 6 )(  vi - v~C )( vj - v jO  ) 

. J  ~ : ( a ( v i -  v / ) ( v ; -  vjd)). 

[2.91 

[2.101 

Here v~ are local (not averaged) velocities, 6 is the phase function defined by 

{~ in the dispersed phase 
6 = in the continuous phase 

and ( ) denotes the volume averaging process (see Immich 1980a). 
The moment stresses/z a arising in the balance of angular momentum of the dispersed phase, 

[2.6], which are made up of the averaged stress moments and a diffusive angular momentum flux 
due to the averaging, are not discussed here, since they can be neglected for the case considered in 
the next section. 

The rotational inertia Od of the particles per mass of a particle is given by 

2 2 Oa = ~a , [2.11] 

where a is the particle radius. 
Due to treating both phases as interacting continua there exist velocity vectors Idi d and v{ 

at each location of the flow field. The material derivatives of each phase are given by 

d = Z +  vs---O [2.121 
dtc Ot J Oxj 

d 0 + d 0 [2.13] 
dTd : O--t v j O x--~i " 

2.2 Const i tu t ive  equat ions  
Constitutive equations (rheological equations of state) must be postulated for the interphase 

force Fi, the interphase moment Mi, the stress tensors ~'~, z~ and the moment stresses/z~. In 
the following we consider laminar flow and we shall restrict to the case of small volume fraction 
of the dispersed phase, i.e. a ~ 1. Hence, the hydrodynamic interaction of the disturbances in 
the flow field caused by the single particles will be neglected. As a further simplification in the 
following we use some hypotheses as proposed by Drew & Segel (1971) and Drew (1976). 

The hypothesis of phase separation states that a bulk phase variable should depend only on 
variables from that same phase. Thus, for example, the fluid stress can depend on the fluid 
shearing OviCl~xi but not on the shearing ~vfllOx i of the dispersed phase. The interphase force 
and the interphase moment, however, can depend on variables from both phases. 

The volume fraction a, however, can appear in the constitutive equations for either phase, since 
a is the particle volume fraction, and 1-a is the fluid volume fraction. 

The hypothesis of local dependence on dispersed phase variables states that for small 
volume fraction a nonlocal effects (specifically gradients) of dispersed phase variables do not 
appear in the constitutive equations of the dispersed phase. 
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The hypothesis of correct low concentration limits states that when the dispersed phase is 
sufficiently dilute, the mixture behaves as if it were made up of the continuous phase alone. 
Moreover, for a < 1, the particles behave like single particles suspended in the continuous 

phase. 
(a) Interphase force. According to the hypothesis of correct low concentration limits we use 

known results for the force on a single small spherical particle. We consider the pressure force, 
the drag force, the added mass effect and a lift force due to fluid shear. The volume averaged 
interphase force is thus given by 

d, ,  p_s_[dvi ~ dv,d~+FL" [2.14] Fi = p~Tx + ~ ( v l  _ 0 6  rp v, ) , a  2 \dtc d ta /  

The first expression on the r.h.s, is the volume averaged pressure force (for the derivation see 
Drew 1971), the second term is the Stokes drag force, zp being the relaxation time for particle 

translation 

2paa2 [2.15a] 
zP= 9 /~ ' 

valid for the particle Reynolds number Rep < 1 

Rep = Ijvi d - viClapcl < 1, [2.15b] 
/z 

is the shear viscosity of the fluid material. 
The third term is the added mass effect. There have been proposed contradictory forms of 

the relative acceleration between particles and fluid to be used in the constitutive equation for 
the added mass effect (see, e.g. Murray 1%5, Anderson & Jackson 1%7, Drew & Segel 1971, 
Soo 1977 and Thacker & Lavelle 1978). The form of the relative acceleration we use here 
coincides with the form applied by Soo (1977) and with an expression proposed by Murray 
(1%5). The same form has been derived analytically by Voinov (1973) for potential flow. 

The fourth term on the r.h.s, of [2.14] is the volume averaged lift force considering particle 
migration across the streamlines in a shear flow. Since there does not exist a general expression 
for this lift force in a general three dimensional flow, we shall give in the next section an 
appropriate expression for this lift force for the case of simple shear considered in this paper 
due to the impulsive motion of the infinite flat plate. 

None of the above cited papers takes into account the Basset force which considers the 
history of the unsteady motion of a single particle (e.g. Landau & Lifshitz 1971). As Anderson 
& Jackson (1%7) point out, in a suspension the historical effect is likely to be erased by the 
hydrodynamic interactions of the disturbances induced in the vicinity of the particles. In fact, 
none of the papers mentioned in the introduction about impulsive motion of a suspension 
considers the Basset force. In the following we neglect the Basset term, too (see Di Giovanni & 
Lee 1974 and for a discussion of unsteady two-phase equations, see Soo 1977). 

(b) Interphase moment. Rubinow & Keller (1%1) gave an expression for the moment on a 
rotating sphere in a quiescent fluid which has been extended by Happel & Brenner (1%5) for 
the case of a sphere rotating relative to a rotational fluid. In volume averaged form this 
interphase moment can be written as (Immich 1979) 

Od /1 Ov~ ~ d\ 
M~ = apd-~R ~E,j,-~j - tO, ] .* [2.16] 

tNote that for spherical particles there exists no term depending on the relative rotational acceleration, which would 
correspond to the added mass effect in [2.14l (e.g. Landau & Lifshitz 1971). 
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Here rR is the relaxation time for particle rotation 

_p,a 
~'R -- 15# = 0.3 Zp, [2.17] 

where the last expression is given by comparison with [2.15]. 
(c) Stress tensor o[ the continuous phase. In analogy to Anderson & Jackson (1%7) and 

Drew & Segel (1971) the symmetric part of the volume averaged stress tensor of the continuous 
phase is written as 

, ,[a f + c 

[2.18] 

The dimensions of the averaging volume have been chosen in a way to smooth out only the 
disturbances of the flow field in the vicinity of the particles, but not to smooth out the gross 
shear motion induced by the flat plate. For this reason the diffusive stresses (1 -  a)pd~ = 
((1 - &)p(v~ - viC)(vi - v~C)) arise to the greatest part due to the above cited disturbances, where 
vi - v[ is the disturbance due to the motion of the particles relative to the mean velocity v~ c. The 
diffusive stresses must be taken into account by the coefficients /~c(a) and At(a). To a first 
approximation we may use for the present situation and for the case of a < 1 the Einstein 
viscosity (see also Drew 1976). 

/zc(a) =/x(1 + ~ a ) ,  [2.19] 

/z being the viscosity of fluid material. 
By postulating that the sum of the averaged normal stresses on a volume element of the 

continuous phase gives the averaged pressure Pc, the volume viscosity At(a) may be written as 

&(a) [2.20] 

The balance of angular momentum for the continuous phase, [2.5], shows that the volume 
averaged stress tensor of the continuous phase is not symmetric. The antisymmetric part of r~ is 
caused by the interphase moment and may be obtained from [2.5] as 

1 1 
~'t~J] = ~ 1 _ ~ 0 k M k  [2.211 

with Mk given in [2.16]. 
The total stress tensor ~'i~ is the sum of the symmetric and the antisymmetric part 

r~.= c + c ~'(iD 7"lift. 

(d) Stress tensor of  the dispersed phase. For the case of small volume fraction (a ~ 1) the 
particles do not interact by direct contact (collision). Hence, there is no momentum transport in 
the dispersed phase by direct contact of the particles. When the hypothesis of local dependence 
on dispersed phase variables is applied, the averaged stress tensor of the dispersed phase may 

be shown to be simply 

,r~ = - pcS,. [2.221 
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As was shown by Panton (1%8) and Drew & Segel (1971), the volume averaged (partial) 
pressure of the dispersed phase may be approximated by the volume averaged pressure of the 
continuous phase when a ~ 1. This result has been considered in [2.22]. The antisymmetric part 
of ~-~ which appears in [2.6] may be interpreted as a source of angular momentum of the 
dispersed phase due to direct transformation of linear momentum into angular momentum by 
collisional contact of the particles (e.g. Becker & Biirger 1975 and Immich 1980a, b). Hence, 
antisymmetric stresses in the dispersed phase can be neglected for the case of small volume 
fraction (a ,~ 1) considered here. 

(e) M o m e n t u m  s tresses .  The momentum stresses /z~ constitute an exchange of angular 
momentum in the dispersed phase due to direct contact of the particles. For small volume 
fraction (a '~ I) they therefore may be neglected 

/z a = 0 for a ,~ 1. [2.23] 

3. IMPULSIVE MOTION OF THE FLAT PLATE 

Consider a flat plate of infinite extent located on the x-axis; the geometry and notation are 
shown in figure 1. 

At time t < 0 the suspension occupying the space y -> 0 and the plate are at rest, the pressure 
Pc and the volume fraction a being constant. At time t = 0, the horizontal velocity of the plate 
is changed impulsively to U. Hence, there are induced horizontal velocities of the continuous 
and the dispersed phases, uc and Ud. Transverse velocities vc and vd are also induced due to the 
lateral migration of the particles as a result of the lift force F~ L. The interphase moment M,. 
causes the particles to rotate with ~d (in the z-direction). 

3.1 L i f t  f o r c e  Fi L 

We use an analytical expression for the lift force on a spherical particle derived by Saffman 
(1965) for the case of a single particle slipping with relative velocity Uc - ud to a linear shear 
flow d u J d y  = const., wall effects being excluded. By taking into account the geometry of figure 
1 and under consideration of the direction of this lift force as given by Saffman the lift force is 

I duc I It2 
F ,  t" = - 6 . 4 6  a2(l~pc)ll2(uc - u/,)[--~-- I . [3.11 

Hence, particles lagging the fluid will be directed towards the wall. The following conditions 
have to be met for [3.1] to be valid: 

Rep = a,Ucl - Udlpcl '~ 1 [3.2a] 
/z 

Res = a la i,~ I~~a21,,uc,,,yl¢,c ,~ 1 [3.2b] 
/z 

Re,. = an_a2todvc ~ 1 [3.2C] 
/x 

and 

Res >> Re~.  [3.2d] 

In volume averaged form and with [2.15] the lift force is 

FyL__.__Ot, 6.46 (Dc~d~ll2(Uc ~duc[ 1'2 
2V2¢r \ ~'p / - ua)l-~- I • [3.3] 
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Rubinow & Keller (1961) gave an analytical expression for the lift force on a spinning sphere 
moving in a viscous fluid. It can be shown (Di Giovanni & Lee 1974, Otterman 1968 and 
Immich 1979) that this lift force is an order of magnitude smaller than the Saffman lift force, 
[3.3], for the problem considered here, hence it is not taken into account. 

Though the Saffman lift force is valid only for linear shear in the absence of walls, it is 
expected to reflect qualitatively the lateral migration of the particles towards the wall in the 
shear flow considered here. This tendency of the particles which are lagging the fluid to migrate 
l~owards the wall is in conformance with a theoretical calculation of the migration velocity of a 
spherical particle in a laminar shear flow with variable shear rate near a wall of Cox & Hsu 
(1977) for the case of Rep ¢ 1. 

3.2 Basic equations in dimensionless form 
The following characteristic quantities are used to introduce dimensionless variables: 

_ 2p.a 2 
(a) Particle relaxation time ~'p - ~  ~- .  

(b) Velocity U of the plate. 

(c) Velocity V with which the boundary layer grows in the y-direction for a particle-free fluid. 
We set 

V = X/(u/¢p) with v =/z/pc. [3.4] 

(d) Boundary layer thickness 

L = ~/(wp) • [3.5] 

The dimensionless variables are 

vc Y 6=-~, f c = ~ ,  ) ~ = ~ ,  6c=p¢~-~p [3.6] 

ua Vd V(vrp) _ t 
a ,  = F '  = = o , , - - - -  U -  - ;7 

Since the interphase force F~ is eliminated when the balance equations of linear momentum of 
the continuous and the dispersed phases both are added (see [2.3] and [2.4]), it is more 
convenient to write down the balance of linear momentum of the continuous + dispersed phase 
and in the following the balance of the dispersed phase alone. 

The basic equations in dimensionless form are: 
Balance of mass 

aa . aa a~¢ 
az v c - ~ + ( 1 - a  O)-~=0 [3.71 

aa + .  aa_ a~a_ 
a--~ Vd-~* a a ;  - o .  [3.81 

Balance of linear momentum of continuous + dispersed phase, x-direction: 

a21i~ f3 15 o \aa aa~ +15 0 [ ad~d ac~  . [3.9] 
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y-direction: 

\o~ oy /  Oc\OT v : ~ } = - ~ +  ay 
. [ 3 . 1 0 ]  

Balance of linear momentum of dispersed phase, x-direction 

( l + l pc ~ / OFld . af~d'~ + l pc ( a~c + . af~c'~ 
2 -p'-d ) L-'~-~r + v a --~ ] = tic - ti a 2 -~a \-~r V d--~ ] , [3.11] 

y-direction 

w i t h  

. OVc] ,-,/PdX Re//2(tic - c " I , ,  lati i, 2 
2pdLaZ v : . ~ j - t . ~ ]  I , 

[3.12a] 

C 6.46.2 TM 
= ~ = 0.2353 and Rep = Uav [3.12b] 

Balance of angular momentum of dispersed phase 

agJd ~.. agJd . 5/atic ) [3.13] 

Equations [3.7]-[3.13] are seven nonlinear coupled equations for the seven unknown dependent 
variables a, Uc, lid, v'~, ~Se, O~d,/~c. 

3.3 Initial and boundary conditions 
Equations [3.7]-[3.13] are subject to the initial and boundary conditions 

~-~0: U = 0  

z > O: U = c o n s t .  

a =const.,/~c =const. j for ~->0 [3.14] 

tic = I ,  ~5c = ~d =0 for y=O [3.15] 

tic = ~5c = tid = ~d = ~d = O} 
a = const.,/~ = const, for f--* oo. 

Since there are no shear stresses in the dispersed phase (see [2.22]), there can be given no 
boundary condition for the horizontal velocity of the dispersed phase at the plate. In the same 
way, there is no boundary condition for the particle rotation at the plate, since momentum 
stresses in the dispersed phase are neglected. Hence, the particle motion is caused only by the 
action of the interphase force and the interphase moment as can be seen from [3.11]-[3.13]. 



450 HANS IMMICH 

The normal velocity of the dispersed phase at the plate can be shown to be zero, since there 
is no mass flow through the plate: 

apdVd = 0 at y = 0. 

Since a -< amax < 1 this gives Vd = 0 at y = 0. 

4. SMALL TIME SOLUTION, ¢,~1 

Approximate solutions to [3.7]-[3.13] are obtained by power series expansions in 
dimensionless time for small and large times. The following transformation of the independent 
variables is employed 

y t 
r / =  = 2 ~ '  " r = - - .  

~e 
[4.1] 

When the particles are much heavier than the fluid, PJPd ~ 1, the case of r ~ 1 corresponds to 
the situation of large particle slip since the particles had not enough time to accomodate their 
velocity to the fluid velocity due to the action of the Stokes drag force. For particles lighter 
than the fluid this is not the case since the added mass effect predominates the Stokes drag 
force, see the factor &/pa appearing in [3.11] and [3.12]. For small times r ~ 1, however, we 
have to restrict to the case of heavy particles, since the continuum description for the 
suspension requires the boundary layer to include a sufficient number of particles. This 
restriction can be expressed as 

6 ~ X/(vt) ,> a [4.2] 

and 

(z/p) u2 >> 1, p = Pc/Pa. [4.3] 

Hence, only for heavy particles the relaxation time is large enough to allow the fluid boundary 
layer to encompass a significant number of solid particles. An examination of restriction [3.2d], 
Res ,> Re~ for the Saffman lift force gives 

t* ~ - ~  [4.4] 

when duJdy in [3.2b] is approximated by Ul~/(vt). When this is compared with ~, ~ 1, one 
obtains 

t* 2pa[aU~ 2 
z 9pc\  v ] 4 1 ,  [4.5] 

since Rep = aUlv < 1 is required to satisfy [3.2a]. Hence, [4.4] is more restrictive than [4.5] 
whenever the particles are heavier than the fluid. 

For small time, the following series expansions in the small parameter z ~ 1 for the seven 
unknown dependent variables a, ac, ad, ~c, ~d, ~d, /ic are used (for a comparison see Otterman 
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1968 and Di Giovanni & Lee 1974): 

Uc = fo(~)  + f l ( '~)  'rl/4 "}" f2(~)  'r214 + . . . .  f y (~ )  "r'ff'4 

/~d = o00(7/) + gl(~) 'rl14 + g2('r/) 'r2/4 + .... g~,('0) 'r~4 

~c = ho(~)+ hl('O)'r 114+ h2('0)¢ 2/4 + . . . .  hy(y/)'t "v/4 

t~a = !o(7) + ll(~) 'rl14 +/2(7/) 'r214 + .... lw(~) 'r'14 

(~d = mo(~l) + ml(~)  Ti14 + m2('t/) 'r2/'l + . . . .  my('r/) 'ryl4 

/~c = PoOl)  + Pl(r / )  "rl/4 + P2(7/) "r2/4 + . . . .  Pv(Y/) 'r~44 

Of = a0(17) + OfI(~)T 114 "~ Ot2('0)T 2/4 "Jr . . . .  O/y(l~)T y/4, 

where we use the convention that it is to be summed up over repeated Greek indices 

/I 
f.,/(T])T ?/4 = ~ f?(T])TY/4 ' 

The boundary conditions [3.15] for ~" > 0 give 

Io(O) = 1 ,  I~(o) = o y_> 1 

h,(O) = 0 for 3' -> 0 

I,(0) = 0 for y -> 0 

[4.6] 

for 7? = 0 [4.7] 

[~ = g~ = h~ = ly = m~ = O y->0 

po=cons t . ,p~=0  y > l  for ~-+oo. 

ao = const., a~ = 0 y -> 1 

4.1 Zeroth order solution 

Use of [4.6] in [3.7]-[3.13], transformed by [4.1], yields perturbation solutions satisfying the 
boundary conditions [4.7]. The zeroth order solutions are 

ao = const., po = const, for 7/_> 0 [4.8] 

2 r ~r~ 
fo(~)= 1-~7-~jo exp(-(Z)d~ '=erfc(3m),  [4.9a] 

//2= 1 -  ao+Aao 1/2 
3 150 ' A = I + p / 2 "  

1 +~ao+-~ao 
[4.9b] 

go(~) = pAfo(~) = pA(1 2 est. , .2~ - ~-~ Jo e x p , - s ,  d~'). [4.10] 

ho = lo = mo=0. [4.11] 

Here p = &/Pd is the density ratio (see [4.3]). To the zeroth order the lift force, [3.3], plays no role, 
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Figure 2. Zeroth order horizontal fluid velocity f o = ( u c l U ) o  , density ratio p = p~lo,~ = 0.001. Influence of 
volume fraction ao. 

hence there is no motion of the particles and the fluid normal to the plate (lo = ho = 0), the constant 
volume fraction ao and the constant pressure Po thus being unaffected. Due to their rotational inertia 
Oa the particles do not rotate (mo = 0). 

The horizontal velocity [o = (uc/U)o of the continuous phase is shown in figure 2 for various ao. 
The case of Go = 0 corresponds to the classical solution of a pure fluid with Bt = I (see Schlichting 
1%5). The coefficient/3i, [4.9b] shows the various influences affecting the fluid velocity fo. The 
expression 1 + (312)ao in the denominator of fl~ is a result of the increased viscosity, [2.19] and thus 
contributes to a greater fluid velocity fo than in a pure fluid. Since there are induced local normal 
velocities in the fluid due to the flow around the single particles as a result of the slip velocity 
uc - ua > 0, there is an increased transfer of momentum in the continuous phase, which gives rise to 
diffusive stresses p j ~  in [2.9]. This increased momentum transfer is considered approximately by 
tzc(a) = (1 + (512)a), [2.19]. 

A further increase of the viscosity of the continuous phase is caused by the antisymmetric 
stresses z~ii] as can be seen from the expression (150[4a2)ao = (3/2)ao in the denominator of/3i, see 
also the coefficient of 32ti~/O~ 2 in [3.9]. In figure 3 the influence of the antisymmetric stresses is 
shown by comparison with the case of T[in = 0, which can be obtained from the above results 
by setting 0 = 0. Hence, antisymmetric stresses contribute to a further increase in the zeroth order 
fluid velocity. Comparison with results of Kline & Allen (1970) show the same effect in the flow of a 
microstructured fluid induced by the impulsive motion of a flat plate. In their paper antisymmetric 
stresses are shown to contribute to an increased fluid velocity, too. Comparison with the results of 
Di Giovanni & Lee (1974) shows that their zeroth order fluid velocity fo is smaller than the results 
obtained here, because they do not take into account an increased viscosity due to the action of 
diffusive and antisymmetric stresses. Furthermore, their basic equations are in contradiction to the 
theoretically more founded equations derived by Drew (1970, 1971), Drew & Segel (1971), 
Buyevich & Markov (1975) and Ishii (1975). Hence, the higher order perturbation solutions 
obtained by Di Giovanni and Lee cannot be compared with the results here. 

The added mass effect, which is characterized by the coefficient A appearing in fit in [4.9b], 
tends to decrease the fluid velocity [o, since an increase in/3i induces a decrease in [o (see [4.9a]). 

The zeroth order particle velocity go, [4.10], is shown in figure 4. As can be seen by the 
coefficient A, the added mass effect causes the particle velocity go = (ud] U)o. Since we consider 
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Figure 3. Velocity fo = (uJu)o; density ratio p = pclpd = 0.001; volume fraction ao = 0.05.--Present theory 
with ~'~n # 0; --- ~'~j] = 0; . . . . .  Di Giovanni & Lee (1974). 
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Figure 4. Zeroth order particle velocity go = (uJU)o; volume fraction ao = 0.05. Influence of density ratio 
P = PJPd. 

heavy particles, Pc~Pal <~ 1, however, the particles near the plate attain only 5°/oo of the fluid 
velocity for PJPd = 0.01 and only 0.y/oo for PJPd = 0.001. However, the dominant influence of 
the density ratio in the added mass effect is demonstrated by figure 4. 

4.2 Higher order solutions 
In the following the nonzero-higher-order perturbation solutions are given. 
(a) Disturbance caused by the interphase moment. To the zeroth and the first order, the 
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particle rotation is zero (too = m~ = 0). To the second order, the interphase moment M~ causes 
the particle rotation 

m2(~l) = -~ ~l f, f ~-2f~ d( , [4.12a] 

which gives after some manipulation 

IOBI " ~ 2  2x l O B /  . . . .  
m2(7/) = ~ exp t - /h  */ ) - --~'qlotPr0). [4.12b] 

The dimensionless particle rotation m2(r/) is given in figure 5 for various a0. The greater particle 
rotation for smaller volume fraction a0 corresponds to the greater fluid rotation (due to the 
greater shear rate) for smaller a0 (see figure 2). 

(b) Disturbance caused by the lift force. The lift force Fy L induces a third order pertur- 
bation velocity 13 of the particles normal to the plate. The differential equation for 13(rl) is 

3 
1 + 5 %  . 

Oaol_--~'aol3 + ~TIKI;-4KI3 = 3cLlf ; l "~(fo  - go) [4.13a] 

( l l ~ / 2 a o )  C -'/4Re//2 K = l - a o + p  So+ _ , CL=~7~p [4.13b] 

and C, given in [3.12b]. 
In figure 6 the numerical solution for 13/CL is shown for various volume fractions ao. Hence, 

the particle velocity is everywhere negative, the particles are moving normal to the plate. Since 
pa0 '~ 1, [4.13a] may also be solved approximately by applying matched asymptotic expansions, 
the solution for pao = 0 representing the outer solution (Immich 1979). The result of the outer 
solution is shown in figure 6 to coincide for r~ > 0 with the solution for So ~ 0.005. Comparison of 

2 O0 

E 

1.6o ~0.05 

1.20 0.1 ~ 

0.80 X 
O.40 

0.00 

Figure 5. Second order particle rotation m2 = (~d)~, ~d = ~°d~/(~rp)l U; density ratio O = 0.001. Influence of 
volume fraction ao. 
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Figure 6. Third order vertical particle velocity 13/cc = ( v a h l c L V ( v / r P ) ;  density ratio p = 0.001. Influence of 
o~o. 

the above results for /3 with the case when antisymmetric stresses are neglected shows no 
essential differences of the two solutions, because fo is not affected strongly by setting ~'fij] = 0 
(see figure 3). Due to the motion of the particles normal to the plate (/3 < 0) a fluid velocity away 
from the plate (h3 > 0) is induced: 

ao 13(~/), [4.14] h30l) = - 1 - a0 

the results are shown in figure 7. Note the strong dependence on ao. The pressure disturbance 
caused by the lateral migration of the particles is 

PPiO1)= (l + l_-~o)(nl3+~ f~13(~)d( ) 

- 2cL(1 - Ap) exp (-8~2sr2/2)fo(~ ") d~'. [4,15] 

The results are shown in figure 8. Hence, there is a slight decrease of the pressure near the 
plate. Since only a pressure drop in direction to the wall can cause the particles to move to the 
wall, the pressure distribution in figure 8 is explainable. 

Due to the migration of the particles to the wall with variable velocity &(,), a fifth order 
disturbance of the constant volume fraction (a0 = const.) is induced: 

a~('7)Oto = - nsl~ f ~  Cml](~) d~ [4.161 
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F i g u r e  8, First order pressure disturbance #,/cL = (pc),r,  lo<vq_ - p = 0 .001 .  I n f l u e n c e  o f  ~o. 

where 
? 

l i m  ~ = - -~l;(0)  [ 4 . 1 7 ]  

The fifth order disturbance as/aoCL is shown in figure 9 indicating the particulate phase tends to 
increase close to the wall and decrease away from the wall. It must be remembered that in the 
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constitutive equations the wall effect has been neglected so that the value of as(0) in [4.17] may 
not be correct. However, since the particles do not interact (a .~ 1), the flow behaviour in a 
distance of some particle radii away from the wall may be expected to be described in the 
correct way. It can be shown that the volume fraction at the plate increases with time: [4.16] 
gives 

(a(,~/o~oh. ={a(~l~o)'~ 1,7 a(alao)_ I , , ,  
---~--T } y \ 0~" ] , - -2 -~  071 ---~i3(~1)~" . [4.18] 

Since l~(0) < 0 (see figure 6), it follows 

(~ )y=O>0.  [4.19] 

(c) Lh'sturbance caused by the Stokes drag force and the interphase moment. While fl = f2 = 
f3 = 0, the fourth order horizontal disturbance velocity of the fluid is caused by the Stokes drag 
force and the interphase moment. The differential equation for f4 is 

f~ + 2,#]2f,~- 4f12f 4 = 4ao 1 - pA 15a ~Oa° 
P (I 3 15 0 P l + ~ a o + - ~ a 0  +~ao+~ao)(l + 2) f° 3 150 m~. [4.20] 

The first term on the r.h.s, is the disturbance caused by the Stokes drag force, the second term 
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is the disturbance by the interphase moment. With m 2 ( ~ / )  from [4.12b] the analytical solution of 
[4.20] is 

Q 1 
f407) = - ~- [:~-~flrr/exp (-fl2~72)-/32"02[o07) ] [4.21a] 

Q = 4a_.._~o 1 - Ap + 0 ao 
3 150 p (1-ao+Aao)( l+p/2)  50-~a21+~o+~Tao 

[4.21bl 

In figure 10,/4 is given for various ao. In a similar way as ao the density ratio O affects the 
disturbance [4: the heavier the particles, the greater the negative disturbance [4 (see the factor 
aolp in [4.21b]). 

Comparison with the case when the antisymmetric stresses rt~jl are neglected shows 
appreciable differences in the fourth order disturbance of the fluid velocity as shown in figure 
11. The very much greater disturbance velocity/4 when rl~n is considered reflects the matter of 
fact that a part of the momentum of the continuous phase is needed to cause the particle 
rotation m2 4: 0. 

The fourth order particle velocity, caused by the Stokes drag force and by the added mass 
effect resulting from the fourth order slip velocity is 

1 - Ap 1 fl, fl:~/2.fo(,r/)] " g4('q) = PA)r4('r/) + 21-~p/2 [2fo(r/) - ~7-#~7 exp (-/32rl 2) + [4.221 

In figure 12 g 4 ( r / )  obtained from [4.22] is compared with the case when z[,jl = 0. As [o(rl) does 
not vary essentially when ~'~1 = 0, there are no essential differences. 

With the above results, the balance of angular momentum of the dispersed phase, [3.13], 
gives an opportunity to calculate the sixth order particle rotation (m3 = m4 = m5 = 0): 

531 -= m6(r/) = - 3"0 ]. ~r-4(.f~ + 4m2) d~'. [4.23] 
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Figure I0. Fourth order horizontal velocity disturbance f4 = (udU)4.  p = 0.001. Influence of a0. 
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Figure 12. Particle velocity g4 = (Ud/U)4. p = 0.00L of 0 = 0.05. --Present theory with ~j j  ~ 0; - - - T[ijj = 0. 

H e n c e ,  m6 is p r o p o r t i o n a l  to  the  d i f f e r ence  b e t w e e n  the  fou r th  o r d e r  f luid r o t a t i o n  and  the  

s e c o n d  o r d e r  pa r t i c l e  ro t a t ion .  W i t h  e q u a t i o n s  [4.12b] and  [4.21] the  ana ly t i ca l  so lu t ion  of  [4.23] 
is 

5 20 Q 4 0 2  3 3  
m6(~?) = ~ / 3 , { [ ( 3 - T ) / 3 m  + ( ~ - - ~ O ) / 3 ,  vl ]foOT) 

1 f40  Q + 4 0  2 2 2  
- : ~ 7 ~ L ~ - ~ - -  ( ~ - - ~ Q ) . B , , r / ] e x p ( - , 8 ~ 2 ) } ,  [4.24] 

with Q given in [4.21b]. The result is shown in figure 13 for various ao. 
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Figure 13. Sixth order particle rotation, p = 0.001. Influence of volume fraction. 

4.3 Numerical example 
For small times, r ~ 1, we have to consider an example where the particle relaxation time rp 

is large enough for the small time solution r = t/rp < 1 to admit physically meaningful times t. 
Hence we consider a gas-particulate suspension with the following parameters 

pc = I kg/m 3 , Pd = 103 kg/m 3 , /z = 1.7" lO s kg/ms 

a = 10 -3 m,  rp = (2/9)pda2/# = 13.07 S. 

As can be seen from figure 11, the greatest disturbance of the fluid horizontal velocity occurs at 
r / =  0.5. For s0 = 0.05 we obtain the following relation for 77 = 0.5 (see [4.25]): uJ U = 0.52 - 10.41r 

for 7 = 0 . 5 .  For r = 0 . 0 2  (time t = 0 . 2 6 s )  we obtain uJU=0.31 at the position 7 = 0 . 5 ,  
y = ~/2X/(~,t)= 2.1 • 10-3m. 

When this is compared with the case of a particle-free fluid (s0 = 0) (see figure 2), we see 
that at , / =  0.5 the fluid velocity uc is reduced by 36 per cent due to the presence of the particles 

(see discussion of [4.21]). 
Comparison of the above with the case when antisymmetric stresses are neglected gives 

uJU = 0.520-0.14~" = 0.517 at ~ = 0.5 (z~j] = 0), 

which demonstrates again the strong influence of antisymmetric stresses on uc. 
Since the disturbance [ j ~ )  may reach rather high values (see figure 10) we conclude from 

[4.21], that the order of magnitude of the ratio ao/p may not be much greater than about 10 (in the 
present example so/p = 50 may constitute an upper limit). For greater values of so/p the 
convergence of the series expansion uJ U = [o +f4~" +""  would require unreasonably small 
values of z ~ 1. For values of ao/p >> 10 the influence of the dispersed phase in the suspension 
is overwhelming (see factor sO JOe = alp in [3.9]). For this case the series expansion [4.6] is not 
appropriate, since the disturbances induced by each phase are not of a comparable order of 

magnitude. 
The particle horizontal velocity attains its greatest values at n = 0 (see figures 4 and 12). For 
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the present example we have 

ua/U = 0.0005 + 0.9990r = 0.0205, for 77 = 0, ¢ = 0.02, 

indicating that for heavy particles (p <~ 1) the disturbances by the Stokes drag force (term 
0.9990¢) is an order of magnitude greater than the added mass effect (term 0.0005). 

Comparison of the particle rotation o~d with the fluid rotation dc =-(1/2)0~c/0y:= 
- ( l /4) f~  "(~-2)/4 gives 

0~._..~ d = --  O)d = - -  d ~ T ( Y - 8 + 2 ) 1 4  

d~c 1 Ouc " f'8 

2 Oy 

To the lowest order for the present example we have 

~d _ m2 7 - - 4 " - ~ , ~ = 6 . 6 6 ~ - = 0 . 1 3  for , / = 0 ,  ~'=0.02. 
tO c Io 

Hence the particle rotation close to the wall attains 13 per cent of the fluid rotation. 

For a discussion of the disturbances Vo Vd, Pc and a, all of which are caused by the lift 
force, we have to restrict to rather low flat plate velocities U, since restrictions [3.2] have to be 
met. 

For U = 0.01 m/s and for ¢ = 0.02 at y = 0 we have 

a[m] ¢j,[s] Ree [duddy[[s -1] Res Res/Ree 2 
10 -3 13.07 0.588 2.46 0,580 1,68 
10 -4 0.13 0.059 24.64 0,058 16.80 

where 

duc_ 1., U -1/2 /~I U -I/2 

The following tabulated results are valid at the wall (y, ~ - 0) for a and Pc or in the immediate 
vicinity of the wall for Vc and Yd. The results for a = 10-3m are expected to be valid only 
qualitatively, since conditions [3.2] are not met for this case. For ~ = 0.02 and p~o = 1 bar we 
have 

a [m]  v S V  v d V  alao = l pdp® = ! 
(n=0) (n--0) +(aslao);14 +(p~1#~)~14 

10 -3 -3.6 x 10 -3 1.9 x 10 4 1.446 4.5 X 10 -9 

10-4 - l . lx l0  -3 6.0xl0 -s 1.014 1.4xl0 -8 

Hence the only palpable effect of the lift force is an increase in the volume fraction near the 
wall of about 45 per cent for a = 10 -3 and of 1.4 per cent for a = 10-~[m]. The other 
disturbances vd, Vc and the pressure disturbances are extremely small. 

4.4 Summary of results for ~ < 1 

The series expansions [4.6] are given as far as they have been examined by the author, 
where the terms in brackets are the next nonzero terms not considered here. 

~ = fo(n) + A(~)~ "~/~ + [fs(~)~.5¢q + . . .  
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/~d ~-- go(T~) + g4(~) '/'4/4 "~- [g5(r~)g 5/4] +" " " 

VC = h3(~7) ~'314 + [h507)z 5/4] +" • • 

/~d = 13(r/) "r3/4 + [15('0) ~'5/4] + '  ' ' 

f~d = m2('r/) 1"2/4 + m6('r/) 'r6/4 + "  ' • 

,6~ = Po + Pl(7/)r 1/4 + [P3(~/)¢ 3/4] + '  • • 

a = a o + a s ( ~ ) r  5 / 4 + ' ' ' .  

[4 .251 

5. L A R G E  T I M E  S O L U T I O N ,  r -> l  

For times large compared with the particle relaxation time, only very small slip between 
particles and fluid is to be expected. The boundary layer now in every case is large enough to 
encompass a significant number of particles, hence the heavy particle restriction [4.3] is not 
necessary. 

An examination of restriction [3.2d], Res -> Re~ for large times, r >> 1, gives 

U 2 
R e s  _ O ( u V e / t l U c _ U a l 2 ) >  > 1, Re~ - 

[5.4] 

since [Uc - ua[2--,0 for T ,> 1. In a similar way, it can be shown that Rep ,~ 1 and Res ¢ 1, hence, 
conditions [3.2a, b] and also condition [3.2c] are met, since the particle rotation is smaller or 
equal to the fluid rotation in the problem considered here. 
The following series expansions are used: 

a~ = F o ( n )  + R ( n ) r - l / 4  + • 

u~ - ua = Go(n)  + Gt(~q)r -'/4 +" 

O~ = Ho(n) + Hi(n)1 "-~/4 +" 

Vc - va = Lo(r/) + L l ( ' 0 ) ' r  -1/4 + '  

o3~ - o3 a = Mo(r/) + Mt(W)~ "-u4 +" 

Pc = PO(rl) + Pl(n) "r-l~4 +" 

Of = aO(~)  + Otl(T~)r -I/4 + "  

= F , ( n ) ~ - - , / '  

= G~,(rl)r -'v14 

= H~(rl)  -¢4 

= L , (r l ) r -~/4  

= Md~),:~/4 

= p , ( .o )r -~  '/4 

= c ~ , ( . O ) . : - ~ / 4  ' 

[5.11 

where o5c is the dimensionless fluid rotation given by 

1 Oti¢ I _lncMc 
d ) c = - - ~  O ~ = - ~ r  - ~ = -  F ; r  -('+2)/4. [5.21 

The particle rotation o5¢ obtained from the above is 

-- ! ]~" ,r-( ') '+2)/4 -- ~ t(,n~,'t-Y/4 o3a = e3c - M ~ , ( r / ) ' r  -~44 = 4 - ~ ,  . . . .  , . . . . .  [5.31 

The boundary conditions [3.15] for r > 0 are 

Fo(0) = 1, F,(0) = 0 y --- 1 

H , ( O )  = 0 ~, _ 0 

L,(0) = 0 y -> 0 

for r) = 0 

[5.51 



IMPULSIVE MOTION OF A SUSPENSION 463 

F~ = G, = H~ = L~ = M~ = O y->0 

Po = const., p~ = 0 y ~ 1 

ao = const . ,  a~ = 0 y -> 1 

for W ~ oo. 

5.1 Zeroth order solution 

The zeroth order solutions are 

ao = const., Po = const., Go = Ho = Lo = Mo = 0, 

2 f a ~  
Fo(~) = 1 - ~ " ~  Jo exp (_(2) d(  = erfc (B1rrt) [5.6a] 

with 

(3~i = 1 - ao + a d o  
3 

1 + ~ao 
[5.6b1 

Hence, we obtain the expected result that to the zeroth order there is no slip velocity (Go = 0) 
and no rotation of the particles relative to the fluid (Mo = 0). The zeroth order fluid velocity 
(which is identical with the zeroth order particle velocity (Go = 0 = (~c - ~d)O) is shown in figure 
14 for various density ratios p = PalPal. Since heavy particles withdraw more momentum from 
the fluid until the velocities are balanced (Go = 0), the boundary layer for heavy particles is 
thinner than for light particles. 

For comparison the results obtained by Di Giovanni and Lee are given too, the only 
difference in their zeroth order solution being the missing of the term (3/2) ao in B~, in [5.6b] due 
to the neglection of an increased viscosity resulting from diffusive stresses, [2.19]. Note the 
missing of the added mass effect (no coefficient A) and of antisymmetric stresses (no coefficient 
O) in B/2r, since there is no zeroth order relative acceleration and no relative rotation between 
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Figure 14. Zeroth order horizontal fluid velocity Fo = (udU)o. ao = 0.05. Influence of density ratio. - -  
present theory; -.- Di Giovanni & Lee (1974). 
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the phases. In a similar way as the density ratio an increase in volume fraction ao causes a 

greater disturbance and thus a smaller velocity (F0)n . . . . .  t when p = PJPd < 0.4. When p > 0.4, 
an increase in volume fraction a0 causes a greater velocity (F0), . . . . .  t., since/3n <- 1 for p -> 0.4. 

Hence, the increased continuous phase viscosity dominates the disturbance caused by the 
momentum which was withdrawn from the fluid to accelerate the particles to the fluid velocity 
for p - 0.4. 

5.2 Higher order solutions 
(a) Solutions for the slip velocities G4, H5 and Ls. A fourth order slip velocity due to the 

Stokes drag force is given by (Go = G~ = G: = G3 = 0): 

G4(7/) = - ~Fo  = :;~7~7! exp (-B};7/2) - 0 ,  [5.71 

which is shown in figure 15 for various density ratios p = PdPd. For p < 0.4, an increase of O~o 
corresponds qualitatively to a decrease of p in figure 15, for p > 0.4 the increased fluid velocity 

dominates as was the case for Fo. For comparison, for p = PJPd = 10, the results are shown in 

figure 16. 
Since the particles are slipping (G4 - 0) in the shear field, the Saffman lift force causes a fifth 

order slip velocity normal to the plate 

cLV2~,3/2 / 3 2 2~> 
L5(7/) = cLIF~['/~G4 = - "~-p , ,  7/exp [ - ~/3H7/ ) - 0. [5.81 

The result for L5(7/) is shown in figure 17 for various density ratios p = PJPa. The fifth order 

particle velocity can be obtained from L5 to be 

05a)5 = -(1 - ao)Ls(7/) < O, [5.9] 

025 

o 2 o  

0.10 ~ ~ 

I .01 0"0.1 ~ \ 

0.05 

O.OC 
0,00 0.50 ~.00 L50 Z00 2.5O 

~= y/2~'~ 

015 

G4 

Figure 15. Fourth order slip velocity G4 = ( uc/U - u d/U)4, or0 = 0.05. Influence of p, 



IMPULSIVE MOTION OF A SUSPENSION 465 

0 . 2 5  

0.20 

0,15 

G~ 

O, IO 

0.05 

0.00 

0.00 0.50 

= ( f O . O 0 5 : ~  C . 0 5  

I.OO 1 . 5 0  

• q = y l 2 ~ f f ' [  

2.00 2.50 

Figure 16. Slip ve loc i ty  G4. p = 10. Influence of ao. 
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Figure 17. Vertical slip velocity L5 = ( ~  - ~)~.  so  = 0.05. Influence of po. 

when the result of the balance of mass is considered, which gives 

aoLs( n ) = Hs( ~I ) = ( vc )5 >- O . [5.10] 

As in the case of ~- ~ 1, the particles are moving to the plate for r >> 1, since (t~d)5 --< 0, [5.9]. The 
fifth order fluid velocity, given in [5.10], is directed away from the plate. 

(b) Third order so lu t ions /o r  a3 and F3. The disturbance of the volume fraction, caused by 
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the lateral migration of the particles is obtained from the balance of mass to be 

3a~ a;  _ 
2ao + r/~o ° - - ( 1  - ao)L;.  [5.11] 

With the result of [5.8] we obtain 

m 2 6,~ 2 2~ / 3 2 2 "~ 
a~3(~) = - - ( 1 - - O t o ) C L ~ [ ( - ~ - - f f p l , ~  q ) e x p  ~ - ~ , l r /  ) +  3fl21 1"/-3/2 f:: 

oto 

/2 6 2 2 \ )ox  [5.12] 

The boundary value at the plate is 

t l  , 2 V 2 ~ m  a3,0. = _ (1 - a o J c L ~ / J  n • [5.13] 
o/o 

The results are shown in figure 18. The instantaneous decrease of a near the plate results from 
the migration of the particles to the wall with different velocity (L;(0) > 0). However, it can be 
shown that the volume fraction at the plate increases with time as was the case for z ~ 1. From 

[5.11] and [5.12] one obtains 

(a(a/ao)% ~/3n(1 ao)L;(r/)r -7/4 > 0 for = 0.  
1 

+ 
aT / y  Z 

[5.141 
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Figure 18. Third order disturbance a3. ao = 0.05. Influence of p. 
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Some part of the fluid momentum is consumed to cause the lateral migration of the particles 
and the change of the constant volume fraction a, which gives rise to the negative disturbance 
velocity F3: 

*2 1 , 39 , 6 -  ,3~ F;+2r/*F;+3F3=CLQp3exp(-~ )[('~P~ +-~lq +ffl"~ ) e x p ( - ~ r / . 2 )  

with 

"* s12 2 6 2 [5.151 

f~ _ 4V'2/9]~ 2 1 - ; 0  ao, P = 1 - (5/2)p 
7/* =/~zm, vF3 - ~r5/+ [5.16] 

1 + ~ a o  (I - ao)p + ao" 

The results of the numerical solution are shown in figure 19. Hence, heavy particles cause a 
greater disturbance than light particles. In the case of ~- ~ 1, the lift force caused a fifth order 
disturbance velocity [s(~), which is not given here. 

(c) Solutions [or F4 and M+. In the contrary to the small time solution, where antisymmetric 
stresses already affect the zeroth order fluid velocity, in the large time solution antisymmetric 
stresses appear for the first time in the solutions for F+ and M6. 

The differential equation for F4 is 

( l+~ao)F~+2~/ t l_ao+p)F~+4( l_o to+_~)F4_.ao.~  _ ~  a o . - . , ,  15___00 .., -- ~ ( _ / 4 - 1 -  L~  P Llr 4 "1- 4 ~  2 aOM6.  

0.00 

-0.80 

- ! .60 

-2 .40 

I ~p  ~,10 
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Figure 19. Third order horizontal fluid velocity F3 = (uc/U)3. ao = 0.05. Influence of p. 

MF Vol. 6. No. S---F 



468 HANS IMMIC8 

The r.h.s showing the two disturbances causing the fourth order perturbation F4: 

(1) The Stokes drag force due to the slip velocity G4 = (tic - tid)4. 

(2) Antisymmetric stresses due to relative rotation M6 between particles and fluid. 
However, the boundary value problem F4(0) = F4(o~) = 0 is not unique, since there exist no 

two linear independent solutions for the i.h.s, of [5.17]. Hence, the numerical solution of [5.17] 
did not converge. Unless F~(0) is known, which may be obtained by an integral formulation of 
the present problem in a similar way as given by Murray (1967), [5.17] cannot be solved. So we 
stop the series expansion for F,(n) here. 

An analytical solution for the relative rotation between particles and fluid can be obtained 
from the balance of angular momentum, [3.13]: 

and 

Mo= MI= M2= M3= M4= Ms=O 

3fin z l  
M6(n) o,~-~(~ F~ + VFo) = - 40--6~, - 2 ~ , v  2) exp ( - ~2 V2). [5.18] 

When F407) is given, the particle rotation (COd) 6 may be obtained from the above 

1 , 313. 
(o3a)6 = - ~F407) + ~ ( 1  - 2t/~p72) exp (-/32rr/2). [5.191 

5.3 Summary of results for ,c ~> 1 
As far as they have been examined by the author, the series expansions [5.1] are given, the 

terms in brackets being the next nonzero terms not considered here. 

fie = Fo('q) + F3('q)'r -3/4 + F4( ' q )  '1"-4/4 + "  ' • 

tic - -  t ia = G 4 ( r l )  r - 4 / 4  + [ G T ( r l )  T-7 /4]  + "  " " 

Vc = ns(~q) 'r-5/4 + [H7(1"1) "r-7/4] +"  ' • 

t~c - /~d  = Ls(~/) T-5/4 + [LT(r/) 7-7/4] + " "  [5.20] 

dJc - dJd = M 6 0 1 ) r  -6 /4  + "  " " 

/~c = Po + [pT(r/) "r-7/4] + " "  

O¢ = Of O "+- Of 3('0) T-3/4 + [of5(~) T 5/4] + . . . .  

6. WALL SHEAR STRESS 

The wall shear stress obtained from the constitutive equation for the continuous phase stress 

tensor, [2.18] and [2.21] in dimensionless form is 

with 

~:w = - ~x(Y = 0) [6.1] 

5 a 150\dtic Of 150- .  [6.21 

V(¢P/~,) [6.31 ~:w = 7 ¢ w  • 
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With the similarity transformation [4.1] one obtains 

( ~ ~ 1 5 0 ~  1 oac+ ,, 150.. 
~:~= l+ a+ _ ~')2---~-~'V 1---L-~4"~ t ~ "  [6:~] 

The wall shear stress for a pure fluid (a = 0) is (see Schlichting 1965) 

1 -I/2 
(~w).0=o = ~- -~T . [6.5] 

(a) Small time solution, r ~ 1. With the results for r < 1 for tic and o3a as given in section 4 
one obtains 

('~W)~o=O 
~w = B1{(l 5+~ao+~-fao) + [ ( 1 1 5 0 \  +~ao5 +4_~ao,]X150 ~Q_ ~5_5a...fOaO.~ao]r+0(r~/4)} > 1 . 

[6.6] 

With/3i from [4.9b] and Q from [4.21b] we have 

TW =1..~_5 15t9 4 ~ ] 2  [ 1 500"1 5/4- (~,,)~o=---~ ~o~o+-~-~o+ ~o+ p(l+/,/2)~--~]~:+o(~ )+... [6.7] 

where we have expanded/3~ and Q in a Taylor series for ao'~ 1 and terms of 0(ao 2) have been 
neglected. 

Here the influences giving rise to a higher wall shear stress than in a particle free (ao = 0) 
fluid are demonstrated. To the first, the increased shear viscosity/zc = #(1 + (5/2)ao) and to the 
second the antisymmetric stresses of the continuous phase (term 150~o/4a 2 in [6.6]) increase the 
wall shear stress. On the other hand the particle rotation reduces rw, as is seen by - 
(150/4a2)(20/3)ao in [6.6]. This effect, however, is small, since the particle rotation is of second 
order (m2(r/)4= 0). For the above cited numerical example with ao = 0.05, p = 0.001 and for 

= t/re = 0.01 we have ~'w/ZW=o=O = 1.1125 + 49.70r = 1.6095, which shows an increase of 61 per 
cent of the wall shear stress in comparison to the particle free case. 

(b) Large time solution, r >> 1. The ratio of the wall shear stress to the wall shear stress for a 
particle free fluid for the large time solution is 

~:w =(I 5 X/~r , 3/,* (~:W)oo=O + ~a0) (/3//- "~F3(0)r- "~-0(T-4/4)+ "" ") [6.8] 

with//ii from [5.6b] we have 

0:W)~o=O 
I 5 X/It 5 ' -314 "~w = l+(~-~p+~)ao---~(l+~ao)F,(0)~" + " . .  [6.9] 

To the third order antisymmetric stresses do not affect the wall shear stress since there is no 
relative rotation between the phases (Mo = M~ = M2 = M3 = M4 = M5 = 0). The wall shear stress 
is raised in comparison to a particle free fluid by the viscosity/& =/z(1 + (5/2)ao) and by the 
density ratio p = pc/pd. Hence, heavy particles may contribute to an appreciable rise of the wall 
shear stress (see the term ao/2p in [6.9]). 

For ao = 0.05 and p = 0.001 this gives for example, ~w/rw~o=O = 27.06 + f(r-3/4), showing that 
the wall shear stress due to the presence of the particles is 27 times greater than for the case 
without particles. 
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7. CONCLUSION 

The motion of the continuous and the dispersed phase in the flow induced by the impulsive 
motion of an infinite flat plate has been examined. The series expansion shows that for small 
times antisymmetric stresses of the continuous phase are important. The antisymmetric stresses 
are proportional to the relative rotation,between the phases, this relative rotation being high for 
small times due to the rotational intertia of the particles. For small times the zeroth order fluid 
velocity is raised by the antisymmetric stresses. Also, for small times, antisymmetric stresses 
contribute to a higher wall shear stress. For large times, when there exists very small relative 
rotation between the phases, antisymmetric stresses, therefore, are of very small influence. 

Hence, antisymmetric stresses of the continuous phase may be important in a suspension 
flow whenever there are great differences in the relative rotation between the phases. This 
relative rotation may be caused by inertia forces as in the present problem, by body couples on 
the particles or by a rigid array of the particles (as in a porous medium). 

There are no experiments known to the author concerning impulsive motion of a suspen- 
sion. The only experiments on a similar flow problem are measurements by Einav & Lee (1973) 
on particles migration in laminar boundary layer flow. Due to the restriction to heavy particles 
for the small time solution experiments to test the small time solution should be done in vertical 
flow along a vertical plate. The inclusion of gravity in the above calculations does not introduce 
mathematical difficulties. 

Another flow situation where antisymmetric stresses may be important, is the case when the 
flat plate is oscillating (Liu 1966), a flow situation which occurs, for example in viscometric 
flows, where viscosity components of suspensions are measured with an oscillating cone and 
plate viscometer (Chien et al. 1975). 
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